Copyright Reserved

(MUM.D(I) - MJC - 1)

Degree (Sem - I) Examination - 2023 Session - (2023-27) MATHEMATICS (Modal Question - 2) PAPER (MJC - 1)

Time: 3 hrs.

Full Marks - 70

Candidates are required to give their answers in their own words as far as practicable. Figures in the margin indicate full marks. Answer from all Groups as directed. Group – A

1. Choose the correct answer of the following:

 $(2 \times 10 = 20)$

- (a) The sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \infty =$
 - (i) $\pi^2/3$
 - (ii) $\pi^2/4$
 - (iii) $\pi^2/6$
 - (iv) $\pi^2/8$
- (b) The value of $\sinh 0 =$
 - (i) 0
 - (ii) 1
 - (iii) ∞
 - (iv) None of these
- (c) The set of all real functions defined on the closed unit interval [0,1] has cardinal number
 - (i) *c*
 - (ii) 2^{*c*}
 - (iii) 2*c*
 - (iv) λ_0
- (d) The function and relation are such that
 - (i) Every relation is a function.
 - (ii) Every function is a relation.
 - (iii) No function is a relation.
 - (iv) No relation is a function.
- (e) If *d* is the greatest common divisor of *b* and *c*, then there exist integers x_0 and y_0 such that
 - (i) $d = (b + c)x_0 + (b c)y_0$
 - (ii) $d = (b+c)x_0 (b-c)y_0$
 - (iii) $d = bx_0 + cy_0$
 - (iv) All of the above.
- (f) Euclid's algorithm is used for finding

(i) GCD of two numbers.

- GCD of more than three numbers. (ii)
- LCM of two numbers. (iii)
- (iv) LCM of more than two numbers.

(g) The rank of the matrix $\begin{bmatrix} -1 & -2 & 1 \\ 1 & 0 & 5 \end{bmatrix}$ is

- (i) 1
- (ii) 2
- 3 (iii) 0
- (iv)

(h) For what value of λ , do the simultaneous equation 2x + 3y = 1, $4x + 6y = \lambda$ have infinite solutions?

- (i) $\lambda = 0$
- $\lambda = 1$ (ii)
- $\lambda = 2$ (iii)
- $\lambda \neq 2$ (iv)
- (i) If the equation $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$ is transformed by the substitution $z = a_0 x + a_1$ to the form $z^3 + 3Hz + G = 0$, then *H* is equal to:

(i)
$$a_0 a_2 - a_1^2$$

- $a_0 a_1 a_2^2$ (ii)
- $a_1a_2 a_0^2$ (iii)
- None of these. (iv)
- (j) If q > 0, r > 0, then the cubic $x^3 + qx + r = 0$ has:
 - All roots real and positive. (i)
 - All roots real and negative. (ii)
 - One positive real root and two imaginary roots. (iii)
 - One negative real root and two imaginary roots. (iv)

Group - B

Answer **any four** questions of the following:

 $(5 \times 4 = 20)$

- 2. Find the equation whose roots are the *p* th powers of the roots of the equation $x^2 - 2x\cos\theta + 1 = 0.$
- 3. Define equivalence relation on a set and prove that the relation 'congruence modulo 5' is an equivalence relation on the of integers.
- 4. If $f: X \to Y$ be a mapping and let $A, B \subseteq Y$, then show that $f^{-1}(A \cap B) = f^{-1}(A) \cap B$ $f^{-1}(B)$.
- 5. If *d* is common divisor of *a* and *b* and g = gcd(a, b), then prove that $d \mid g$.
- 6. Find the rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10 \end{bmatrix}.$$

7. If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of

$$(\beta + \gamma - \alpha)^2 + (\gamma + \alpha - \beta)^2 + (\alpha + \beta - \gamma)^2.$$

Group – C

Answer **any three** questions of the following:

 $(10 \times 3 = 30)$

- 8. Find the sum of a series of cosines of n angles, which are in arithmetical progression.
- 9. State and prove Cantor's theorem.
- 10. State and prove Fundamental Theorem of Arithmetic.
- 11. Prove that the transpose of a matrix is the same as that of the original matrix, hence find the rank of the matrix

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$

12. Solve the equation $3x^4 - 25x^3 + 50x^2 - 50x + 12 = 0$ having given that the product of two roots is 2.