Degree (Sem - I) Examination - 2023
 Session - (2023-27)
 MATHEMATICS
 (Modal Question - 2)
 PAPER (MJC - 1)

Time: 3 hrs

Candidates are required to give their answers in their own words as far as practicable.
Figures in the margin indicate full marks.
Answer from all Groups as directed.
Group - A

1. Choose the correct answer of the following:

$$
(2 \times 10=20)
$$

(a) The sum of the series $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \infty=$
(i) $\pi^{2} / 3$
(ii) $\pi^{2} / 4$
(iii) $\pi^{2} / 6$
(iv) $\pi^{2} / 8$
(b) The value of $\sinh 0=$
(i) 0
(ii) 1
(iii) ∞
(iv) None of these
(c) The set of all real functions defined on the closed unit interval $[0,1]$ has cardinal number
(i) c
(ii) 2^{c}
(iii) $2 c$
(iv) λ_{0}
(d) The function and relation are such that
(i) Every relation is a function.
(ii) Every function is a relation.
(iii) No function is a relation.
(iv) No relation is a function.
(e) If d is the greatest common divisor of b and c, then there exist integers x_{0} and y_{0} such that
(i) $\quad d=(b+c) x_{0}+(b-c) y_{0}$
(ii) $\quad d=(b+c) x_{0}-(b-c) y_{0}$
(iii) $\boldsymbol{d}=\boldsymbol{b} \boldsymbol{x}_{\mathbf{0}}+\boldsymbol{c} \boldsymbol{y}_{\mathbf{0}}$
(iv) All of the above.
(f) Euclid's algorithm is used for finding
(i) GCD of two numbers.
(ii) GCD of more than three numbers.
(iii) LCM of two numbers.
(iv) LCM of more than two numbers.
(g) The rank of the matrix $\left[\begin{array}{ccc}-1 & -2 & 1 \\ 1 & 0 & 5\end{array}\right]$ is
(i) 1
(ii) 2
(iii) 3
(iv) 0
(h) For what value of λ, do the simultaneous equation $2 x+3 y=1,4 x+6 y=\lambda$ have infinite solutions?
(i) $\lambda=0$
(ii) $\lambda=1$
(iii) $\lambda=2$
(iv) $\quad \lambda \neq 2$
(i) If the equation $a_{0} x^{3}+3 a_{1} x^{2}+3 a_{2} x+a_{3}=0$ is transformed by the substitution $z=a_{0} x+a_{1}$ to the form $z^{3}+3 H z+G=0$, then H is equal to:
(i) $\quad a_{0} a_{2}-a_{1}^{2}$
(ii) $\quad a_{0} a_{1}-a_{2}^{2}$
(iii) $a_{1} a_{2}-a_{0}^{2}$
(iv) None of these.
(j) If $q>0, r>0$, then the cubic $x^{3}+q x+r=0$ has:
(i) All roots real and positive.
(ii) All roots real and negative.
(iii) One positive real root and two imaginary roots.
(iv) One negative real root and two imaginary roots.

Group - B

Answer any four questions of the following:

$$
(5 \times 4=20)
$$

2. Find the equation whose roots are the p th powers of the roots of the equation $x^{2}-2 x \cos \theta+1=0$.
3. Define equivalence relation on a set and prove that the relation 'congruence modulo 5 ' is an equivalence relation on the of integers.
4. If $f: X \rightarrow Y$ be a mapping and let $A, B \subseteq Y$, then show that $f^{-1}(A \cap B)=f^{-1}(A) \cap$ $f^{-1}(B)$.
5. If d is common divisor of a and b and $g=\operatorname{gcd}(a, b)$, then prove that $d \mid g$.
6. Find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right]
$$

7. If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the value of

$$
(\beta+\gamma-\alpha)^{2}+(\gamma+\alpha-\beta)^{2}+(\alpha+\beta-\gamma)^{2}
$$

Group - C

Answer any three questions of the following:

$(10 \times 3=30)$
8. Find the sum of a series of cosines of n angles, which are in arithmetical progression.
9. State and prove Cantor's theorem.
10. State and prove Fundamental Theorem of Arithmetic.
11. Prove that the transpose of a matrix is the same as that of the original matrix, hence find the rank of the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & -3 & 4 \\
3 & -2 & 3
\end{array}\right]
$$

12. Solve the equation $3 x^{4}-25 x^{3}+50 x^{2}-50 x+12=0$ having given that the product of two roots is 2 .
