Degree (Sem - I) Examination - 2023
 Session - (2023-27)
 MATHEMATICS
 (Modal Question - 1)
 PAPER (MIC - 1)

Time: 3 hrs

Candidates are required to give their answers in their own words as far as practicable.
Figures in the margin indicate full marks.
Answer from all Groups as directed.
Group - A

1. Choose the correct answer of the following:

$$
(2 \times 10=20)
$$

(a) If $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin \theta$, then value of n is:
(i) Positive or negative integers.
(ii) Rational numbers.
(iii) Both (i) and (ii).
(iv) None of the above.
(b) $\sinh ^{2} x-\cosh ^{2} x=$ \qquad
(i) 1
(ii) -1
(iii) 0
(iv) 2
(c) The period of e^{z} is:
(i) π
(ii) 2π
(iii) πi
(iv) $2 \pi i$
(d) Let $f: R \rightarrow R$, where R is the set of real numbers defined by $f(x)=x^{2}$, then $f^{-1}(4)$ is equal to:
(i) $\{2\}$
(ii) $\{-2\}$
(iii) $\{-2,2\}$
(iv) $\{4\}$
(e) The set R of all real numbers in the interval $[0,1]$ is:
(i) Countable
(ii) Uncountable
(iii) Denumerable
(iv) None of these
(f) The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are:
(i) 5
(ii) 8
(iii) 15
(iv) None of these
(g) If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, whenever $A^{2}=B$, the value of α is:
(i) -1
(ii) 1
(iii) 4
(iv) No real value of α.
(h) If A is a symmetric matrix, then $\operatorname{adj}(A)$ is also:
(i) Symmetric
(ii) Skew-symmetric
(iii) Hermitian
(iv) Skew-Hermitian
(i) Every polynomial equation of an odd degree has:
(i) No real roots
(ii) At least one real root
(iii) All roots real
(iv) All roots imaginary
(j) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $a_{0} x^{4}-4 a_{1} x^{3}+6 a_{2} x^{2}-4 a_{3} x+a_{4}=$ 0 , then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=$ \qquad
(i) $4 a_{1} / a_{0}$
(ii) $4 a_{3} / a_{0}$
(iii) $\quad 4 a_{3} / a_{4}$
(iv) $4 a_{1} / a_{4}$

Group - B

Answer any four questions of the following:

$$
(5 \times 4=20)
$$

2. Show that the solution of the equations $(1+x)^{2}+(1-x)^{2}=0$ are given by $x=$ $\pm i \tan \pi / 4$.
3. Show that if $A \subseteq B$, then $A \times A=(A \times B) \cap(B \times A)$.
4. Prove that the function $f: A \rightarrow B$ given by $f(x)=x^{2}+x+1$, for all $x \in R$ is not injective.
5. If A is a Hermitian matrix, show that $i A$ is skew-Hermitian.
6. Solve the equation $6 x^{3}-11 x^{2}+6 x-1=0$ whose roots are H. P.
7. Apply Descartes's rule of signs to discuss the nature of roots of the equation $x^{4}+$ $15 x^{2}+7 x-11=0$.

Group - C

Answer any three questions of the following:

$$
(10 \times 3=30)
$$

8. Separate real and imaginary parts of the expression $(\alpha+i \beta)^{x+i y}$.
9. If A and B are countable sets, then prove that $A \times B$ is also countable.
10. If A and B are conformable for the product $A B$ and B and C are conformable for the product $B C$, then show that $(A B) C=A(B C)$.
11. Examine the consistency and solve the following system of equations:

$$
\begin{gathered}
x+2 y-z=3 \\
3 x-y+2 z=1 \\
2 x-2 y+3 z=2 \\
x-y+z=-1
\end{gathered}
$$

12. Solve the equation $x^{3}-9 x+28=0$ by Cardon's method.
