Degree (Sem - I) Examination - 2023
 Session-(2023-27)
 MATHEMATICS
 (Modal Question - 1)
 PAPER (MDC - 1)

Time: 3 hrs.
Candidates are required to give their answers in their own words as far as practicable.
Figures in the margin indicate full marks.
Answer from all Groups as directed.

Group - A

1. Choose the correct answer of the following:
(a) The value of $(2+2 i)^{6}=-$:
(i) $512 i$
(ii) $-515 i$
(iii) $-512 i$
(iv) $-312 i$
(b) If $|x| \leq 1$, then $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots$ to ∞ is:
(i) $\tan ^{-1} \frac{1+x}{1-x}$
(ii) $\boldsymbol{\operatorname { t a n }}^{-1} \boldsymbol{x}$
(iii) $\pi / 4$
(iv) None of these
(c) $\cosh x$ is equal to:
(i) $\quad\left(\boldsymbol{e}^{x}+\boldsymbol{e}^{-x}\right) / \mathbf{2}$
(ii) $\left(e^{x}-e^{-x}\right) / 2$
(iii) $\quad\left(e^{x}+e^{-x}\right)$
(iv) $\left(e^{x}-e^{-x}\right)$
(d) Determine which of the following graph is a function in the domain from the point A to the point B :
(i)

(ii)

(iii)

(iv)

(e) Let R be a relation in a set A. If R is reflexive, antisymmetric and transitive, then R is called:
(i) An equivalence relation in A.
(ii) A partial ordered set.
(iii) A total order relation.
(iv) A partial order relation in A.
(f) If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then A^{2} is equal to:
(i) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(ii) $\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
(iii) $\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & 1\end{array}\right]$
(iv) $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
(g) If A be a non-singular square matrix, then which one of the following is not correct:
(i) $\quad A$ is symmetric, then A^{-1} is symmetric.
(ii) $\quad A$ is symmetric, then $A^{\mathbf{- 1}}$ is skew-symmetric.
(iii) $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$
(iv) All of the above.
(h) If $A^{2}-A+I=0$, then the inverse of A is:
(i) A
(ii) $I-A$
(iii) $A-I$
(iv) $A+I$
(i) How many solutions will the equation $f(x)=10 x^{7}-5 x^{3}+3 x-1=0$ have?
(i) 7
(ii) 3
(iii) 1
(iv) No solution
(j) If α, β, γ are the roots of the equation $9+4 x+6 x^{2}-3 x^{3}=0$, then $\sum \alpha$ is:
(i) $-4 / 9$
(ii) 0
(iii) 2
(iv) $4 / 9$

Group - B

Answer any four questions of the following:
2. Find the locus of the points satisfying the inequality $|z-1| \geq 3$.
3. Assuming that $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$ and $\cos x=\frac{e^{i x}+e^{-i x}}{2}$, prove that $\sin ^{2} x+\cos ^{2} x=1$, for all values of x and y, real or complex.
4. Give an example of a relation which is reflexive and symmetric but not transitive.
5. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, prove that $A^{2}-4 A-5 I=0$.
6. Find the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$.
7. Find the condition that the roots of the equation $a x^{2}+3 b x^{2}+3 c x+d=0$ are in arithmetic progression.

Group - C

Answer any three questions of the following:
8. State and prove Gregory series.
9. Let A be a non-empty set and R be an equivalence relation in A. Suppose that $a, b \in$ A are arbitrary elements, then show that either $[a]=[b]$ or $[a] \cap[b]=\phi$, where $[a]$ and $[b]$ are equivalence classes of a and b respectively.
10. Show that every square matrix is uniquely expressible as the sum of symmetric and skew-symmetric matrices.
11. Show that the equations

$$
\begin{gathered}
x+y+z=6 \\
x+2 y+3 z=14 \\
x+4 y+7 z=30
\end{gathered}
$$

are consistent and solve them.
12. (a) Find the equation whose roots are the roots of $x^{5}+4 x^{3}-x^{2}+11=0$ each diminished by 2.
(b) Find the least possible number of imaginary roots of the equation $x^{9}-x^{5}+$ $x^{4}+x^{2}+1=0$.

